Welcome & agenda

> A warm welcome on behalf of the FOOTPRINT partners
> Thanks for being here and for your interest in the project
> Programme of the day
 • morning:
 - presentation of the overall project
 - scientific aspects
 • Lunch at 1 pm
 • afternoon:
 - split in groups
 - convene at the end
 • Finish at 4 pm
First FOOTPRINT meeting

> First official presentation of the project
> First meeting of the Advisory Committee

> Double aim:
 • to present the overall project: aims, objectives, deliverables, challenges
 • to discuss how best the project can benefit stakeholders and end-users

The FOOTPRINT project

> FTOOPRINT: FuncTional tOOls for Pesticide Rlsk AssessmeNt and ManagementT

> 3-year EU-funded project

> Started 1 January 2006
An EU project

- **Call:** FP6-2004-SSP-4
- **Framework programme:** FP6
- **Specific programme:** Integrating and strengthening the European Research Area
- **Activity:** "Policy support and anticipating scientific and technological needs" (SSP – Scientific Support to Policies)
- **Area:** 8.1.B.1.5 Environmental assessment (soil, water, air, noise, including the effects of chemical substances)
- **Task:** #1, Risks of pesticides use to surface and groundwater
- **Instrument:** STREP (Specific Targeted Research Project)

How was FOOTPRINT put together?

- **30/10/2004:** publication of the call in the Official Journal of the European Communities
- **15/11/2004:** first contacts with potential partners taken
- **01/12/2004:** discussions with rival bidders
- **07/01/2005:** meeting in Paris [12 partners]
- **31/01/2005:** submission of the proposal to the EU [15 partners]
- **06/06/2005:** evaluation Summary Report (28/30)
- **10/07/2005:** deadline for first version of the DOW and CPF
- **23/09/2005:** meeting with the Scientific Officer in Brussels
- **03/11/2005:** end of negotiations
- **01/01/2006:** start of the project
- **24/02/2006:** kick-off meeting
The FOOTPRINT consortium

> 15 partners from 9 European countries
> Pesticide fate specialists, modellers, hydrologists, hydrogeologists, agronomists, data and GIS specialists, soil scientists, climatologists, ecotoxicologists, tool developers
> Very complementary profiles
> Experience at the local, regional and national scale

The FOOTPRINT partners
Project objectives

> Overall objective: to develop a set of computer tools that will allow users to:

 • i) identify the dominant pathways and sources of pesticide contamination in the agricultural landscape.

 • ii) estimate levels of pesticide concentrations in surface water and groundwater.

 • iii) make scientifically-based assessments of how the implementation of risk reduction strategies is likely to reduce pesticide contamination of water resources.
Project goals

> 1) to develop a suite of three pesticide risk assessment and management tools, for use by three different user communities:
 • Farmers and extension advisors at the local (farm) scale
 • Water managers at the catchment scale
 • Policy makers/registration authorities at the national/EU scale.

> 2) to evaluate the usability and performance of the FOOT tools through piloting and evaluation studies at their various scales of application.

The three FOOT tools

<table>
<thead>
<tr>
<th>End-users</th>
<th>Fs</th>
<th>CrS</th>
<th>NES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers</td>
<td>Farmers</td>
<td>Farmers</td>
<td>Farmers</td>
</tr>
<tr>
<td>Extension advisers</td>
<td>Extension advisers</td>
<td>Extension advisers</td>
<td>Extension advisers</td>
</tr>
<tr>
<td>Water managers</td>
<td>Water managers</td>
<td>Water managers</td>
<td>Water managers</td>
</tr>
<tr>
<td>Policy & decision makers</td>
<td>Policy & decision makers</td>
<td>Policy & decision makers</td>
<td>Policy & decision makers</td>
</tr>
<tr>
<td>Scale</td>
<td>Local (farm)</td>
<td>Catchment</td>
<td>National / EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The three FOOT tools

> Each tool will help:

1. Identify the dominant pathways and sources of pesticide contamination in the agricultural landscape
2. Predict pesticide concentrations impacting surface water and groundwater
3. Make scientifically-based assessments of how the implementation of mitigation strategies will reduce pesticide contamination of water resources

> All three tools will share the same philosophy and underlying science.

The FOOT-FS tool

> To be used at the farm level by extension advisers and farmers

> Emphasis on:

1. Identifying the pathways and areas most contributing to contamination of water resources by pesticides
2. Providing site-specific recommendations to limit transfers of pesticides in the local agricultural landscape

> Stand-alone application & web portal
The FOOT-CRS tool

> To be used at catchment level by local authorities, stewardship managers and water managers

> Emphasis on:
 1. Identifying the areas most contributing to the contamination of water resources by pesticides
 2. Defining and/or optimising action plans at the scale of the catchment

> Add-on in ArcGIS

The FOOT-NES tool

> To be used at the large scale by EU and member states policy and decision-makers, and pesticide registration authorities

> Emphasis on:
 1. Identifying the areas most at risk from pesticide contamination
 2. Assess the probability of pesticide concentrations exceeding legal or ecotoxicologically-based thresholds

> Add-on in ArcGIS
Going operational

> 3 years
> 8 Work Packages
 • WP0: project launching and coordination
 • WP1: integrated knowledge reviews
 • WP2: high-resolution scenario-based spatial zonation
 • WP3: identification of landscape features and contamination pathways
 • WP4: model parameterisation, meta-modelling and risk assessment
 • WP5: development of functional tools
 • WP6: piloting and evaluation of tools
 • WP7: communication and dissemination
> 46 deliverables
The challenge of integration

> Example: development of FOOT-FS

- Rely on metamodels (WP4-2) and new version of models (WP4-1)
- Uses generic scenarios (WP2) or site specific information (WP3-1)
- Integrates risk assessment approaches (WP3-3)

> Need for a very good communication between WP leaders

Particularly innovative aspects

> 3 tools, 1 philosophy
> Integration of tools and methodologies developed in the various Member States and by different communities
> Tools tailored to the target audience

> Development of a large number of scenarios covering the whole of the EU25
> Use of high-performance computing resources to run pesticide fate models
Communication within the consortium

- Annual meetings
- Work package meetings
- User-friendly shared server resource
- Remote meetings using webcams
- Free telephone calls via VoIP

Communication and dissemination

- Multimedia web site with educational section and downloadable material
- FOOTPRINT announcement list
- Annual newsletter
- Press releases
- Advisory Committee
- Talks at workshops and conferences
- Scientific and less-scientific papers
- Video tutorials for real-world applications
- Information relay workshops for each tool
Involving stakeholders and end-users

> The relevance of the tools developed to stakeholders and end-users is key (SSP project)
> The project has resulted in a lot of interest arising from different communities
> Advisory Committee set up for those with a strong interest in the project and its associated tools
 * Level-1 members: 10 senior individuals
 * Level-2 members: 24 individuals

The role of AC members

> Provide their feedback on the project
> Make sure that what we deliver is relevant to the needs of stakeholders and end-users
> Act as information relays in their influence circles
> Help us find complementary sources of funding for specific tasks not covered by the EU funding
> Help us find ways to reach the target communities of the FOOT tools

Workshops this afternoon
Acknowledgements

The funding of the FOOTPRINT project by European Commission through its Sixth Framework Programme is gratefully acknowledged.