

Introducing FOOTPRINT

Functional tools for pesticide risk assessment and management

FOOTPRINT call FP6-2004-SSP-4

- Call published on 30/10/2005
- Framework programme: FP6
- Specific programme: Integrating and strengthening the European Research Area
- Activity: "Policy support and anticipating scientific and technological needs" (SSP – Scientific Support to Policies)
- Area: 8.1.B.1.5 Environmental assessment (soil, water, air, noise, including the effects of chemical substances)
- Task: #1, Risks of pesticides use to surface and groundwater
- Instrument: STREP (Specific Targeted Research Project)
- Start: 1 January 2006

- プ Total budget: 1.7 M€ (EC: 1.2 M€)
- Duration: 3 years
- 15 partners
- 9 countries

FOOTPRINT partners

FOOTPRINT individuals

France:	Igor Dubus (BRGM, Orléans)
	Enrique Barriuso (INRA, Grignon)
	Benoît Réal (Arvalis-Institut du Végétal, Paris)
	Olivier François (GEOSYS, Toulouse)
UK:	John Hollis (Cranfield University, Silsoe)
	Kathy Lewis (Univ. of Hertfordshire, Hatfield)
	Hayley Fowley (Univ of Newcastle, Newcastle)
Sweden:	Nick Jarvis (Swedish Univ. of Agricultural Sciences,
	Uppsala)
Denmark:	Jeanne Kjær & Anker Højberg (GEUS,
	Copenhagen)
Germany:	Martin Bach & Stefan Reichenberger
	(University of Giessen, Giessen)
Poland:	Wieslaw Fialkiewicz & Ireneusz Kajewski (Agricultural
	University of Wroclaw, Wroclaw)
Italy:	Giovanna Azimonti & Domenica Auteri (Int. Ctre
	for Pesticides & Health Risk Prevention, Milan)
	Giovanni Bidoglio & Faycal Bouraoui (Joint Research
	Centre, Ispra)
Slovenia:	Franc Lobnik & Metka Suhadolc (University of Ljubljana, Liubliana)
Greece:	Eva Vavoulidou-Theodorou & Polykarpos Lolos (National Agricultural Research Foundation, Athens)

www.eu-footprint.org

Objectives of the project

To develop a suite of <u>three</u> pesticide risk assessment <u>and</u> management tools for use by <u>three</u> different end-user communities:

Farmers and extension advisors at the local (farm) scale

- > Water managers at the <u>catchment</u> scale
- Policy makers/registration authorities at the national/EU scale
- To evaluate the <u>usability</u> and <u>performance</u> of the FOOT tools through <u>piloting</u> and <u>evaluation</u> studies at their various scales of application

The three FOOT tools

Each tool will help:

- 1. Identify the dominant pathways and sources of pesticide contamination in the agricultural landscape
- 2. Predict pesticide concentrations impacting surface water and groundwater
- 3. Make scientifically-based assessments of how the implementation of mitigation strategies will reduce pesticide contamination of water resources

All three tools will share the same philosophy and underlying science.

The FOOT-FS tool

To be used at the farm level by extension advisers and farmers

> Emphasis on:

- Identifying the pathways and areas most contributing to contamination of water resources by pesticides
- 2. Providing site-specific recommendations to limit transfers of pesticides in the local agricultural landscape

Stand-alone application & web portal

The FOOT-CRS tool

- To be used at catchment level by local authorities, stewardship managers and water managers
- > Emphasis on:
 - Identifying the areas most contributing to the contamination of water resources by pesticides
 - 2. Defining and/or optimising action plans at the scale of the catchment
- Add-on in ArcGIS

The FOOT-NES tool

- To be used at the large scale by EU and member states policy and decision-makers, and pesticide registration authorities
- Emphasis on:
 - 1. Identifying the areas most at risk from pesticide contamination
 - 2. Assess the probability of pesticide concentrations exceeding legal or ecotoxicologically-based thresholds
- Add-on in ArcGIS

VFS

Going operational

3 years

8 Work Packages (8 WP)

- o WP0: project launching and coordination
- o WP1: integrated knowledge reviews
- **o** WP2: high-resolution scenario-based spatial zonation
- o WP3: identification of landscape features and contamination pathways
- WP4: model parameterisation, meta-modelling and risk assessment
- o WP5: development of functional tools
- o WP6: piloting and evaluation of tools
- o WP7: communication, dissemination, training and education

46 deliverables

So what's next?

- Early 2006
 - 1. www.eu-footprint.org goes live
 - 2. Kick-off meeting in France

o On an annual basis

- o annual meetings
- o electronic newsletter

o At the end of the project

- o international conference
- o information relay workshops for each of the three tools

o Outside and beyond the project

- o information days
- o training sessions

How can I keep in touch? How can I ensure that the tools meet my needs?

- Become a member of the Advisory Committee (two levels of commitment possible)
- Attend annual meetings (France, Poland, Denmark, Italy)
- Attend the international conference
- o Register with the FOOTPRINT electronic announcement list

About FOOTPRINT

Project structure

FOOTPRINT consortium

FOOTPRINT products

Pressroom

Agenda

Exemple de texte décrivant le proiet FOOTPRI rive dealers the eu-footprint.0rg VWW.eu-footprint.2006 VWW from 1 Feb. 2006 live from 1 de texte décrivant le projet FOOTPRINT Ex décrivant le projet FOOTPRINT Exerv le projet FOOTPRINT

Exemple de texte de texte décu décriv

dè

dé

le p

projet FOOTPRINT Exemple et FOOTPRINT Exemple de texte FOOTPRINT Exemple de texte décrivant

e texte

exte décrivant

FOOTPRINT

FOOTPRINT is a research project in the **6th Framework** Programme that will allow... More

Discover how you can get involved

Discover...

Learn how pesticides can affect our water resources... Visit the multimedia corner

Discover how you can contribute to the protection of water... Go

Latest news...

8-7-05: the **FOOTPRINT** web site becomes live More news

Home

Contact

FAQ

A project coordinated by: BRGM - 3 avenue Claude Guillemin - BP 6009 - 45060 Orléans cedex 2 - France

PRINT

The science behind the tools

Identification of the dominant contamination pathways:

- o Combination of the CORPEN and HOST methodologies for FOOT-FS and FOOT-CRS
- o IDPR methodology for FOOT-NES

Estimation of pesticide concentrations

- o Based on pesticide fate models or carbon-copies of these models (model emulators)
- o Model for leaching and drainage: MACRO
- o Model for runoff: PRZM

The (meta)modelling context

Models in real time

- At the local scale
- through a web portal (submission / results)

AND

Metamodels running in a blink of an eye

- o carbon copies / emulators of models
- o Local, regional and national scales
- o concept: pre-run a large number of scenarios and infer results from these pre-runs

Representative scenarios

Definition of a <u>large</u> number of environmental scenarios covering the whole of the EU25, based on information on:

- Climate
- Cropping
- 🤊 Soil
- (Subsoil)

We really mean LARGE!

- o 30 soils x 50 climates x 10 crops = 15,000 environmental scenarios
- o 10 Koc x 10 DT50 = 100 pesticide scenarios
- o Hence 1,500,000 MACRO and PRZM runs

Going beyong typical modelling activities

1,500,000 MACRO runs

- Assuming 1 hour per run
- 1,500,000 hours = 62500 days = <u>171 years</u>
- yet the EC would only fund the project for 3 years (2 years of running in effect)!
- EC unlikely to accept a 168-year extension to the contract...

- → Increase the speed of computers
- ➔ Increase the efficiency of MACRO
- ➔ Increase the number of machines running the model

Redefining modelling boundaries

3 approaches:

- o Use of European supercomputers
- o Use of smaller dedicated IT infrastructures (Linux clusters)
- o FOOTPRINT@work

SETI@home turns into FOOTPRINT@work

- o from extraterrestrial search to pesticide fate modelling
- Concept: use the computing power of corporate machines which is not being used (e.g. outside working hours, during holidays)
- o 171 years of running on a single machine = 1 year of 342 machines running 12 hours a day (a night).
- o Development of an IT infrastructure enabling the automatic running of models across (multiple) computer networks

www.eu-footprint.org

FOOTPRINT coordinator:

Dr Igor G. Dubus i.dubus@brgm.fr, T: +33 238 64 47 50

