Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z
Search
Support
Edit history
Purchasing and licensing
NEW
- New support docs available
- Newsletter Aug 2025
- User survey
NEW
Free webinar 24 Sept: Inside Farmer Clusters
Amprolium hydrochloride
Last updated: 15/09/2025
(Not known by any other names)

GENERAL INFORMATION
Description
Amprolium is a thiamine analogue
Examples of veterinary uses
Mainly used to treat coccidiosis
Examples of species treated
Poultry; Dogs; Cats; Elephants; Pigeons
Approval status
VMR 2013/2033 approval status (GB/UK)
Approved - usually authorised as a veterinary medicine for general sale (AVM-GSL)
EU Regulatory approval status
Approved
Chemical structure
Isomerism
None
Chemical formula
C₁₄H₁₉N₄Cl
Canonical SMILES
CCCC1=NC=C(C(=N1)N)C[N+]2=CC=CC=C2C.Cl.[Cl-]
Isomeric SMILES
No data
International Chemical Identifier key (InChIKey)
PJBQYZZKGNOKNJ-UHFFFAOYSA-M
International Chemical Identifier (InChI)
InChI=1S/C14H19N4.2ClH/c1-3-6-13-16-9-12(14(15)17-13)10-18-8-5-4-7-11(18)2;;/h4-5,7-9H,3,6,10H2,1-2H3,(H2,15,16,17);2*1H/q+1;;/p-1
2D structure diagram/image available?
Yes
Cambridge Crystallographic Data Centre diagrams
Common Name Relationship Link
amprolium hydrochloride -
General status
Veterinary substance type
Coccidiostat, Antiprotozoal agent, Antiparasitic
Substance groups
Thiamine analogue
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Synthetic
Mode of action
A thiamine analogue, blocks the thiamine transporter of Eimeria species
Molecular targets
[Thiamine, Antagonist]
CAS RN
137-88-2
EC number
205-307-5
CIPAC number
-
US EPA chemical code
-
PubChem CID
1349737338
Therapeutic Class
Antiparasitic products, insecticides & repellents: Antiprotozoals
ATCvet Code
QP51AX09
Controlled Drug?
No
Regulation 37/2010 MRL Classification
Allowed substance (Table 1: Poultry)
Molecular mass
315.24
PIN (Preferred Identification Name)
-
IUPAC name
5-[(2-methylpyridin-1-ium-1-yl)methyl]-2-propyl-pyrimidin-4-amine chloride
CAS name
1-[(4-Amino-2-propyl-5-pyrimidinyl)methyl]-2-picolinium chloride
Forever chemical
-
Other status information
Not approved as a feed additive in EU
Relevant Environmental Water Quality Standards
-
Physical state
White to off-white coloured powder
Related substances & organisms
Commercial
Property
Value
Availability status
Current
Introduction & key dates
Mid 20th century, introduced
Example manufacturers & suppliers of products using this active now or historically
  • Harkers Ltd
Example products using this active
  • Amprovine
  • Amprolium
  • Amprol
  • Anticoccid
  • Harkers Pigeon Coccidiosis Treatment Concentrate
Formulation and application details
Usually supplied as a concentrate to add to drinking water
Commercial production
The production of amprolium hydrochloride involves a multi-step synthetic process starting from precursors like butyronitrile and acrylonitrile. Initially, butyronitrile reacts with methanol and ammonia to form butylamidine hydrochloride, while acrylonitrile undergoes methylation to yield alpha-methoxymethyl-beta-methoxylacrylonitrile. These intermediates are then combined to synthesize 4-amino-5-methoxy-2-propylpyrimidine, which serves as the core structure. In the final step, this pyrimidine derivative is reacted with 2-picoline to form the active compound, amprolium, which is then converted into its hydrochloride salt for enhanced solubility and stability.
Impact on climate of production and use
Published GHG data is not available for most pharmaceuticals. However, according to industry, global averages suggest producing 1 kg of a typical active pharmaceutical ingredient can range from 10 to 100 kg CO₂e for small molecule drugs and potentially up to 1000 kg CO₂e for complex biologicals such as vaccines, depending on the drug type, its formulation, complexity of synthesis, solvent recovery, and energy sources used.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
- - -
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
- - -
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
- - -
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Refractive Index
- - -
Environmental release
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
Soil degradation (days) (aerobic)
DT₅₀ (typical)
- - -
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
Note
-
Manure DT₅₀ (days)
>8
R4 R = Peer reviewed scientific publications
4 = Verified data
Slightly persistent
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
- - -
Bio-concentration factor
BCF (l kg⁻¹)
- - -
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 4000
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Rat
Low
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
- - -
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
Vegetative vigour ER₅₀ (g ha⁻¹)
- - -
Seedling emergence ER₅₀ (g ha⁻¹)
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic Plants (free-floating, fonds growth, fresh) - 7 day (mg l⁻¹)
- - -
Aquatic plants (rooted, growth rate, fresh) - 14 day (mg l⁻¹)
- - -
Algae - Acute (growth rate, fresh; mg l⁻¹)
- - -
Algae - Chronic (growth rate, fresh; mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
High (class III) - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 4000
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Rat
Low
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
Mammalian dose elimination route and rate
Rapidly absorbed from the gastrointestinal tract and very rapidly excreted via the urine and faeces
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
-
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
XNo, known not to cause a problem
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E3 E = Unspecified genotoxicity type (miscellaneous data source)
3 = Negative
No data found
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
XNo, known not to cause a problem
XNo, known not to cause a problem
No data found
Respiratory tract irritant Skin irritant Skin sensitiser
Yes, known to cause a problem
Yes, known to cause a problem
?Possibly, status not identified
Eye irritant Phototoxicant  
Yes, known to cause a problem
No data found  
General human health issues
May cause stomach distress, nausea or vomiting
Handling issues
Property
Value and interpretation
General
No information available
CLP classification 2013
-
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
amprolium hydrochloride
French
chlorhydrate d' amprolium
German
-
Danish
-
Italian
-
Spanish
hidrocloruro de amprolio
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 15/09/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242