Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z
Search
Support
Edit history
Purchasing and licensing
NEW
- New support docs available
- Newsletter Aug 2025
- User survey
NEW
Free webinar 24 Sept: Inside Farmer Clusters
Oxantel pamoate
Last updated: 06/09/2025
(Also known as: oxanel pamoate)

GENERAL INFORMATION
Description
A tetrahydropyrimidine anthelminic veterinary drug
Examples of veterinary uses
Use as a treatment for intestinal worms especially Canine whipworms, hookworms and roundworms
Examples of species treated
Dogs; Cats
Approval status
VMR 2013/2033 approval status (GB/UK)
Not approved
EU Regulatory approval status
Not approved
Chemical structure
Isomerism
Oxantel pamoate exhibits geometric and stereoisomerism, primarily due to the structural features of its active component, oxantel, and its salt form with pamoic acid. The oxantel molecule contains a carbon–carbon double bond between the pyrimidine ring and the phenol group, which allows for E/Z (cis/trans) isomerism. The therapeutically active form is the (E)-isomer, where the substituents on either side of the double bond are positioned opposite each other, optimizing its interaction with nicotinic acetylcholine receptors in parasites. Additionally, the pamoate (embonate) counterion is a complex aromatic compound that can also exist in different conformational isomers, although these do not significantly affect pharmacological activity
Chemical formula
C₁₃H₁₆N₂O·C₂₃H₁₆O₆
Canonical SMILES
CN1CCCN=C1C=CC2=CC(=CC=C2)O.C1=CC=C2C(=C1)C=C(C(=C2CC3=C(C(=CC4=CC=CC=C43)C(=O)O)O)O)C(=O)O
Isomeric SMILES
CN1CCCN=C1/C=C/C2=CC(=CC=C2)O.C1=CC=C2C(=C1)C=C(C(=C2CC3=C(C(=CC4=CC=CC=C43)C(=O)O)O)O)C(=O)O
International Chemical Identifier key (InChIKey)
CCOAINFUFGBHBA-UETGHTDLSA-N
International Chemical Identifier (InChI)
InChI=1S/C23H16O6.C13H16N2O/c24-20-16(14-7-3-1-5-12(14)9-18(20)22(26)27)11-17-15-8-4-2-6-13(15)10-19(21(17)25)23(28)29;1-15-9-3-8-14-13(15)7-6-11-4-2-5-12(16)10-11/h1-10,24-25H,11H2,(H,26,27)(H,28,29);2,4-7,10,16H,3,8-9H2,1H3/b;7-6+
2D structure diagram/image available?
Yes
General status
Veterinary substance type
Anthelmintic, Antiparasitic
Substance groups
Tetrahydropyrimidine
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Synthetic
Mode of action
Acts as a potent agonist at the acetylcholine receptors on the muscle cells of nematodes causing paralysis
Molecular targets
[Nicotinic acetylcholine receptor, Agonist]
CAS RN
68813-55-8
EC number
272-332-6
CIPAC number
-
US EPA chemical code
-
PubChem CID
-
Therapeutic Class
Antiparasitic products, insecticides & repellents: Anthelmintics
ATCvet Code
QP52AF03
Controlled Drug?
No
Regulation 37/2010 MRL Classification
-
Molecular mass
604.65
PIN (Preferred Identification Name)
-
IUPAC name
1-Methyl-2-(3-hydroxyphenylethenyl)-1,4,5,6-tetrahydropyrimidine compound with 4,4-Methylenebis(3-hydroxy-2-naphthoic Acid)
CAS name
3-[(E)-2-(1-methyl-1,4,5,6-tetrahydropyrimidin-2-yl)ethenyl]phenol pamoate
Forever chemical
-
Other status information
-
Relevant Environmental Water Quality Standards
-
Physical state
-
Related substances & organisms
Commercial
Property
Value
Availability status
-
Introduction & key dates
Circa 1974, first introduced
Example manufacturers & suppliers of products using this active now or historically
  • Vetoquinol UK Limited
Example products using this active
  • Dolpac tablets
Formulation and application details
Usually supplied in tablet form for oral administration
Commercial production
The production of oxantel pamoate involves a multi-step synthesis starting with the preparation of the active pharmaceutical ingredient, oxantel, which is a tetrahydropyrimidine derivative. This is typically synthesised through a condensation reaction involving a substituted pyrimidine and a phenol derivative, forming the key (E)-alkene linkage that defines its bioactive configuration. Once oxantel is obtained in its pure form, it is reacted with pamoic acid, a large aromatic dicarboxylic acid, to form the oxantel pamoate salt.
Impact on climate of production and use
Published GHG data is not available for most pharmaceuticals. However, according to industry, global averages suggest producing 1 kg of a typical active pharmaceutical ingredient can range from 10 to 100 kg CO₂e for small molecule drugs and potentially up to 1000 kg CO₂e for complex biologicals such as vaccines, depending on the drug type, its formulation, complexity of synthesis, solvent recovery, and energy sources used.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
- - -
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
247
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
-
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
- - -
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Refractive Index
- - -
Environmental release
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
Soil degradation (days) (aerobic)
DT₅₀ (typical)
- - -
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
Note
-
Manure DT₅₀ (days)
- - -
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
- - -
Bio-concentration factor
BCF (l kg⁻¹)
- - -
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 980
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Rat
Moderate
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
- - -
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
Vegetative vigour ER₅₀ (g ha⁻¹)
- - -
Seedling emergence ER₅₀ (g ha⁻¹)
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic Plants (free-floating, fonds growth, fresh) - 7 day (mg l⁻¹)
- - -
Aquatic plants (rooted, growth rate, fresh) - 14 day (mg l⁻¹)
- - -
Algae - Acute (growth rate, fresh; mg l⁻¹)
- - -
Algae - Chronic (growth rate, fresh; mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
High (class III) - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 980
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Rat
Moderate
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
Mammalian dose elimination route and rate
Mainly excreted via the faeces.
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
-
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
No data found
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E0 E = Unspecified genotoxicity type (miscellaneous data source)
0 = No data
No data found
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
No data found No data found No data found
Respiratory tract irritant Skin irritant Skin sensitiser
No data found
XNo, known not to cause a problem
No data found
Eye irritant Phototoxicant  
No data found No data found  
General human health issues
May cause gastrointestinal problems and headaches
Handling issues
Property
Value and interpretation
General
No information available
CLP classification 2013
-
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
oxantel pamoate
French
-
German
-
Danish
-
Italian
-
Spanish
-
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 06/09/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242