Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z: All
Micro-organism related
Macro-organism related
Plant-derived
Animal-derived
Other naturals
Search
Support information
Edit history
Purchasing and licensing
Industry collaboration
NEW
User survey
Bacillus thuringiensis subsp. kurstaki strain SA12
Last updated: 04/01/2025
(Also known as: Btk; Bt; Bacillus thuringiensis)

Data alerts

The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.

Environmental fate Ecotoxicity Human health
Environmental fate
Moderate alert:
Potential for particle bound transport: Medium
Ecotoxicity
Moderate alert:
Bees acute oral ecotoxicity: Moderate
Warning:
Significant data are missing
Human health
Low alert
GENERAL INFORMATION
Description
Strain of the bacterial insecticide Bt selected for control of susceptible pests
Example pests controlled
European Grapevine Moth (Lobesia botrana); European Grape Berry Moth (Eupoecilia ambiguella)
Example applications
Grapes
Efficacy & activity
Products containing these Bt strains have all been authorised at Member State level for >10 years and demonstrated to be effective
Appearance and life cycle
Diamond-shaped, Gram-positive, spore forming bacterium. Bacillus cultures are found in nature in one of two states. They are found either as vegetative cells that are actively growing and dividing or as spores.
Availability status
Current
Introduction & key dates
1901, first discovered
Taxonomic classification
Class: Bacilli; Order: Bacillales; Family: Bacillaceae
GB regulatory status
GB COPR regulatory status
Approved
Date COPR inclusion expires
30/04/2029
GB LERAP status
None
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Approved
Dossier rapporteur/co-rapporteur
Denmark/Netherlands
Date EC 1107/2009 inclusion expires
30/06/2038
EU Candidate for substitution (CfS)
No
Listed in EU database
Yes
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
               
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
             
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
                 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
ISIceland
NONorway
                 
Additional information
Known to be also used in the following countries
Morocco
Chemical structure
Isomerism
Not applicable
Chemical formula
-
Canonical SMILES
-
Isomeric SMILES
-
International Chemical Identifier key (InChIKey)
-
International Chemical Identifier (InChI)
-
2D structure diagram/image available?
No
General status
Biopesticide type
Insecticide, Other substance
Other bioactivity & uses
Bactericide
Substance groups
Micro-organism
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Natural
Mode of action
Stomach poison. Microbial disruptor of insect midgut membranes.
Substance source
Isolates occur widely in soils and in most insect-rich environments
Substance production
Produced commercially by controlled fermentation. Spores harvested for formulation into final point-of sale product
Uses
Crop protection
Target pests
European Grapevine Moth (Lobesia botrana); European Grape Berry Moth (Eupoecilia ambiguella)
Target host
Grapes
Farming system suitability
Suitable for use in all farming systems where approved for use in that country
CAS RN
68038-71-1
EC number
-
CIPAC number
770
US EPA chemical code
-
PubChem CID
-
Molecular mass
35792.0
Chemical name
Bacillus thuringiensis subsp. Kurstaki strain SA12
PIN (Preferred Identification Name)
-
IUPAC name
-
CAS name
-
Other status information
-
Relevant Environmental Water Quality Standards
-
Herbicide Resistance Class (HRAC MoA class)
Not applicable
Herbicide Resistance Class (WSSA MoA class)
Not applicable
Insecticide Resistance Class (IRAC MoA class)
11A
Fungicide Resistance Class (FRAC MOA class)
Not applicable
Examples of recorded resistance
Many cases reported
Physical state
Bacterium
Related substances & organisms
Formulations
Property
Product
Manufacturer
Example products
DelFin WG Certis
Costar Biological insecticide Certis
Formulation and application details
Often supplied as a granular formulation of endotoxin crystals and living spores which is mixed with water and applied as a spray. Frequent applications required.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
10
DW3 DW = Don Wauchope personal database for Pka data: Wauchope, R. D. and Edwards, J. Dissociation constants for pesticide active ingredients: a database and comparison with predicted values. Dataset is no longer available.
3 = Unverified data of known source
Low
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
- - -
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
- - -
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
2.7
K4 K = Research datasets (e.g. Pandora, Demetra; these datasets no longer available). Norman Ecotoxicology database. (click here )
4 = Verified data
Non-persistent
DT₅₀ (lab at 20 °C)
2.7
K4 K = Research datasets (e.g. Pandora, Demetra; these datasets no longer available). Norman Ecotoxicology database. (click here )
4 = Verified data
Non-persistent
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
DT₅₀ modelling endpoint
- - -
Note
Other sources DT₅₀s up to 120days
Dissipation rate RL₅₀ (days) on plant matrix
Value
- - -
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
- - -
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
DW2 DW = Don Wauchope personal database for Pka data: Wauchope, R. D. and Edwards, J. Dissociation constants for pesticide active ingredients: a database and comparison with predicted values. Dataset is no longer available.
2 = Unverified data of unknown source
Non-mobile
Koc (mL g⁻¹)
5000
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 5000
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Rat
Low
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
> 5000
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Anas platyrhynchos
Low
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
- - -
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
> 100
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Apis mellifera
Low
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
> 82
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Apis mellifera
Moderate
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
Harmless
Q2 Q = Miscellaneous data from online sources
2 = Unverified data of unknown source
Parasitic wasp
-
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
2.9 x 1009
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Oncorhynchus mykiss as CFU/L
-
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
> 1.51 x 1008
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Daphnia magna as CFU/L
-
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic plants - Acute 7 day EC₅₀, biomass (mg l⁻¹)
- - -
Algae - Acute 72 hour EC₅₀, growth (mg l⁻¹)
> 1.0 x 1009
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Selenastrum capricorntum
Low
Algae - Chronic 96 hour NOEC, growth (mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
Not applicable - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 5000
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
Rat
Low
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
None allocated
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
-
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
None allocated
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
-
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
None allocated
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
-
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
Public are unlikely to be exposed due to patterns of use
Occupational
No adverse risks predicted or reported
Mammalian dose elimination route and rate
Bt does not persist in the digestive systems of mammals that ingest it
G3 G = Extension Toxicology network database EXTOXNET. Available online but no longer updated. (click here )
3 = Unverified data of known source
-
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
XNo, known not to cause a problem
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E3 E = Unspecified genotoxicity type (miscellaneous data source)
3 = Negative
XNo, known not to cause a problem
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
XNo, known not to cause a problem
XNo, known not to cause a problem
XNo, known not to cause a problem
Respiratory tract irritant Skin irritant Skin sensitiser
?Possibly, status not identified
?Possibly, status not identified
Yes, known to cause a problem
Eye irritant Phototoxicant  
Yes, known to cause a problem
No data found  
General human health issues
May be a skin sensitiser
Handling issues
Property
Value and interpretation
General
No information available
CLP classification 2013
Health: H317, H319, H335
WHO Classification
III (Slightly hazardous)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
Bacillus thuringiensis subsp. kurstaki strain SA12
French
Bacillus thuringiensis subsp. kurstaki strain SA12
German
Bacillus thuringiensis subsp. kurstaki strain SA12
Danish
Bacillus thuringiensis subsp. kurstaki strain SA12
Italian
Bacillus thuringiensis subsp. kurstaki strain SA12
Spanish
Bacillus thuringiensis subsp. kurstaki strain SA12
Greek
Bacillus thuringiensis subsp. kurstaki strain SA12
Polish
Bacillus thuringiensis subsp. kurstaki strain SA12
Swedish
Bacillus thuringiensis subsp. kurstaki strain SA12
Hungarian
Bacillus thuringiensis subsp. kurstaki strain SA12
Dutch
Bacillus thuringiensis subsp. kurstaki strain SA12
Norwegian
-

Record last updated: 04/01/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242