Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z: All
Micro-organism related
Macro-organism related
Plant-derived
Animal-derived
Other naturals
Search
Support
Edit history
Purchasing and licensing
Industry collaboration
NEW
- New support docs available
- Newsletter Aug 2025
- User survey
Potassium sorbate
Last updated: 25/08/2025
(Not known by any other names)

Hazard alerts

The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement. These hazard alerts do not take account of usage patterns or exposure, thus do not represent risk.

Environmental fate Ecotoxicity Human health
   
Human health
Low alert
GENERAL INFORMATION
Description
Potassium sorbate is used in agriculture primarily as a natural fungicide and insecticide, especially in greenhouse and field applications
Example pests controlled
Alternaria; Black mould (Aspergillus niger); Fusarium semitectum; cheese moulds including Penicillium roqueforti; Fruit fly (Drosophila melanogaster)
Example applications
Post-harvest treatment of various fruits, vegetables, cheeses and feeds
Efficacy & activity
-
Appearance and life cycle
-
Taxonomic classification
-
GB regulatory status
GB COPR regulatory status
Not approved
Date COPR inclusion expires
Not applicable
GB LERAP status
No UK approval for use as a pest management agent
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Not approved
Dossier rapporteur/co-rapporteur
Not applicable
Date EC 1107/2009 inclusion expires
Not applicable
EU Candidate for substitution (CfS)
Not applicable
Listed in EU database
No
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
                 
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
                 
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
                 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
ISIceland
NONorway
                 
Additional information
Known to be also used in the following countries
-
Chemical structure
Isomerism
None
Chemical formula
C₆H₇KO₂
Canonical SMILES
C/C=C/C=C/C(=O)[O-].[K+]
Isomeric SMILES
-
International Chemical Identifier key (InChIKey)
CHHHXKFHOYLYRE-STWYSWDKSA-M
International Chemical Identifier (InChI)
InChI=1S/C6H8O2.K/c1-2-3-4-5-6(7)8;/h2-5H,1H3,(H,7,8);/q;+1/p-1/b3-2+,5-4+;
2D structure diagram/image available?
No
General status
Biopesticide type
Fungicide; Insecticide; Antimicrobial; Other substance
Other bioactivity & uses
Food & feed preservative
Substance groups
Plant-derived
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Natural
Mode of action
As a fungicide its mode of action is due to its ability to disrupt cellular processes especially under acidic conditions
Substance source
Formed as the potassium salt of sorbic acid, which occurs naturally in small quantities in the fruits of various plants
Uses
Food protection
Target pests
Alternaria; Black mould (Aspergillus niger); Fusarium semitectum; cheese moulds including Penicillium roqueforti; Fruit fly (Drosophila melanogaster)
Target host
Post-harvest treatment of various fruits, vegetables, cheeses and feeds
Farming system suitability
-
CAS RN
24634-61-5
Alternative/old CAS RN
590-00-1
EC number
246-376-1
CIPAC number
-
US EPA chemical code
075902
PubChem CID
23676745
Molecular mass
150.22
PIN (Preferred Identification Name)
potassium;(2E,4E)-hexa-2,4-dienoate
IUPAC name
potassium;(2E,4E)-hexa-2,4-dienoate
CAS name
-
Forever chemical
-
Other status information
USEPA minimum risk pesticide; USA GRAS; E202; FEMA=2921; FLAVIS=16.061
Relevant Environmental Water Quality Standards
-
Herbicide Resistance Class (HRAC MoA class)
Not applicable
Herbicide Resistance Class (WSSA MoA class)
Not applicable
Insecticide Resistance Class (IRAC MoA class)
Not applicable
Fungicide Resistance Class (FRAC MOA class)
Not applicable
Examples of recorded resistance
-
Physical state
White crystalline solid with characteristic odour
Commercial
Property
Value
Availability status
Current
Introduction & key dates
1995, first used as a seed treatment; 2002, used as a mould inhibitor in feed
Example manufacturers & suppliers of products using this active now or historically
  • Apac Chemical
  • Celanese Nutrinova
  • FBC Industries
  • Salvi Chemical Industries Ltd.
  • Biesterfeld SE, Germany
Example products using this active
  • Sorbistat-K
  • Sorbistat Potassium
Formulation and application details
Often formulated as a seed treatment
Commercial production
Commercial production of potassium sorbate begins with the synthetic creation of sorbic acid, typically through a chemical reaction between crotonaldehyde and ketene. Once sorbic acid is obtained, it’s neutralised with potassium hydroxide to form potassium sorbate.
Impact on climate of production and use
The production of potassium sorbate emits approximately 5.00 kg of CO₂ equivalent per kg of product. This figure represents the climate footprint at the factory level and includes emissions from energy use, chemical processing, and transport up to that stage. Alternative production methods, such as synthesising potassium sorbate from triacetic acid lactone using food-grade solvents have been explored for greater sustainability. These newer methods can have a carbon intensity ranging from 9.6 to 18.6 kg CO₂e/kg, depending on the process and feedstock used.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
582
F4 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
4 = Verified data
Moderate
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
- - -
Boiling point (°C)
- - -
Degradation point (°C)
270
F4 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
4 = Verified data
-
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
6.46 X 10-03 Calculated -
Log P
-2.19
F4 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
4 = Verified data
Low
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
1.363
F4 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
4 = Verified data
-
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
72.6
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
Biodegradable
Soil degradation (days) (aerobic)
DT₅₀ (typical)
9
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Non-persistent
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
DT₅₀ modelling endpoint
- - -
Note
General literature estimates soil DT₅₀ at around 9 days
Dissipation rate RL₅₀ (days) on plant matrix
Value
- - -
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
- - -
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 4920
F5 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
5 = Verified data used for regulatory purposes
Rat
Low
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
- - -
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
Vegetative vigour ER₅₀ (g ha⁻¹)
- - -
Seedling emergence ER₅₀ (g ha⁻¹)
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic Plants (free-floating, fonds growth, fresh) - 7 day (mg l⁻¹)
- - -
Aquatic plants (rooted, growth rate, fresh) - 14 day (mg l⁻¹)
- - -
Algae - Acute (growth rate, fresh; mg l⁻¹)
- - -
Algae - Chronic (growth rate, fresh; mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
- - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 4920
F5 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
5 = Verified data used for regulatory purposes
Rat
Low
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
Mammalian dose elimination route and rate
- - -
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
XNo, known not to cause a problem
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E3 E = Unspecified genotoxicity type (miscellaneous data source)
3 = Negative
XNo, known not to cause a problem
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
XNo, known not to cause a problem
XNo, known not to cause a problem
XNo, known not to cause a problem
Respiratory tract irritant Skin irritant Skin sensitiser
XNo, known not to cause a problem
XNo, known not to cause a problem
XNo, known not to cause a problem
Eye irritant Phototoxicant  
XNo, known not to cause a problem
No data found  
General human health issues
No information available
Handling issues
Property
Value and interpretation
General
Incompatible with strong oxidising agents
When heated to decomposition it emits toxic fumes of K2O
CLP classification 2013
-
WHO Classification
-
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
Stable under ambient conditions
TRANSLATIONS
Language
Name
English
potassium sorbate
French
-
German
-
Danish
-
Italian
-
Spanish
-
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 25/08/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242