Characterising Agricultural Areas in Europe

John Hollis

www.eu-footprint.org

Background - 1

> Sustainable use of pesticides within European agriculture is a stated goal.
> Requires a clear understanding of the routes by which pesticide residues can reach non-target areas.
> European agricultural conditions are diverse.
 - Clearly impractical to measure losses from every field.
> Need other methods – Numerical modelling

www.eu-footprint.org

Background - 2

> Numerical models are difficult to parameterise – 'data hungry'
> Most current European risk assessment procedures use a limited number of 'realistic worse-case scenarios'. (c.f. FOCUS tools)
> Recent suggested refinements include more probabilistic modelling with a broader range of soil and climate conditions (FOCUS L & M 2003).
> BUT, development has been hampered by the lack of harmonised data at the pan-European scale.
> FOOTPRINT has now addressed this issue.

www.eu-footprint.org

Objectives for creating Agro-Environmental Scenarios

> Develop and apply a methodology for defining generic scenarios for characterising the complete spectrum of European agricultural environments (integrate crop, weather and soil characteristics).
 - Scenarios must be capable of being applied anywhere in Europe at European/national/regional, catchment and farm/holding level.
 - Each scenario should have a default set of
 - long-term weather data
 - soil property data
 - agronomic data.

www.eu-footprint.org

Methodology

> Climate: Identify zones in which the critical weather variables are relatively similar.
 Define representative long term daily weather data for each zone.

> Crop: Identify and map the different types of agricultural land and the crops grown on them.
 Define crop growth characteristics for each crop.

> Soil: Identify the soil properties that are critical for pesticide transport and map their distribution.
 Define soil profile characteristics for each soil.
> Integrate all three data layers using GIS intersection to create the scenarios.

www.eu-footprint.org

Creating the agricultural land & crop data layer

> Use CORINE 2000 to identify and map agricultural land.
> Use corrected European cropping statistics from the FATE Land Cover map (JRC) to quantify range of annual crops grown.
> Use GIS to intersect CORINE agricultural areas with FATE Land Cover data.
Identification of FOOTPRINT Soil Types - Objectives

- To identify a limited number of soil types suitable for modelling environmental fate of pollutants across Europe.
- To represent the complete range of relevant pollutant transfer pathways from the soil surface to water resources.
- To represent the complete range of soil sorption potential relevant to ‘reactive’ pollutants.

The Hydrological Component

A combination of the Hydrology Of Soil Types system - HOST (Boorman et al 1994; Schneider et al 2007) and the CORPEN system (Groupe “diagnostic” du CORPEN, 1996)

HOST provides a quantitative link between soil types and stream response to rainfall.

CORPEN provides seasonal differentiation of pollutant transfer pathways. (Flow Pathway Categories, FPCs)

FOOTPRINT soil hydrological class

<table>
<thead>
<tr>
<th>Hydrological code</th>
<th>Description</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Drained soils which have low permeability and are subject to limited water storage. They can only maintain limited evaporative demand or evapotranspiration. Example: Sands and gravels, fine sands.</td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td>Slightly impermeable soils, subject to limited water storage. They can only sustain limited evaporative demand or evapotranspiration, and are more sensitive to waterlogging. Example: Sandy-clay loams, clay loams.</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>Impermeable soils with high potential evapotranspiration. Example: Clayey soils with high clay content and low permeability.</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>Soil with high potential evapotranspiration, subject to limited water storage. Example: Sandy-clay loams, clay loams.</td>
<td>4</td>
</tr>
<tr>
<td>R</td>
<td>Impermeable soils with high potential evapotranspiration. Example: Heavy clay soils.</td>
<td>5</td>
</tr>
<tr>
<td>N</td>
<td>Drained soils with high potential evapotranspiration. Example: sandy-clay loam soils.</td>
<td>6</td>
</tr>
<tr>
<td>M</td>
<td>Impermeable soils with high potential evapotranspiration. Example: Clayey soils with high clay content and low permeability.</td>
<td>7</td>
</tr>
<tr>
<td>L</td>
<td>Drained soils with high potential evapotranspiration. Example: sandy-clay loam soils.</td>
<td>8</td>
</tr>
</tbody>
</table>

Creating the Soil Data Layer

> Assign a FOOTPRINT Soil Type (FST) to each Soil Typological Unit (STU) in SGDBE using stu.dbf attributes.
> All STU’s in the SGDBE represented by 373 FOOTPRINT soil types.
> 264 FST’s represent soils under arable or permanent crops.
> 287 FST’s represent soils under managed grassland.
> 33 FST’s represent soils only under non-agricultural uses.
> Use SPADE-1 and SPADE-2 databases (Approximately 2000 profiles) to derive profile parameters for each FOOTPRINT soil class under arable or permanent crops.

What is a FOOTPRINT Agro-environmental scenario?

> A unique combination of land use, cropping, climatic zone and soil map unit.
> Local soil is defined from a range of FSTs with a specific % probability of occurrence.
> For those scenarios that have a partly or wholly ‘arable’ land use, a specific range of annual crops with an estimated % probability of occurrence.

Data associated with scenarios

> 20 year daily weather data for each climate zone derived from the time series with driving variables closest to the ‘average’ for the zone.
> Probability fraction of crops occurring in ‘arable’ polygons.
> Crop growth templates for each crop.
> Probability fraction of FOOTPRINT soil types (FST’s) in each polygon.
> Soil horizon property data for each (arable) FST.
> Hydrological data for each FST.
Use of the Scenarios in the FOOT tools

> Option 1: No data:
 Use the spatial distribution of agro-environmental scenarios for areas where detailed data are not available (ArcGIS in FOOT-CRS and –NES).

> Option 2: More detailed local/regional data:
 Use the Data Management module in FOOT-CRS & FOOT-NES to create your own scenarios from your data. Correlate your local soils (from your own soil map) with FOOTPRINT soil types through a decision tree based on simple questions.

Conclusions

> The 25044 FOOTPRINT scenarios represent the spatial variation and heterogeneity of environmental conditions in the European agricultural landscape.
> The scenarios and their supporting information are used to:
 * Identify contamination pathways throughout Europe.
 * Underpin model parameterization.
> A significant contribution towards harmonization of risk assessment throughout Europe.
> Likely to be applicable to other agricultural contaminants such as nitrate or phosphorus.

Acknowledgements

The funding of the FOOTPRINT project by the European Commission through its Sixth Framework Programme is gratefully acknowledged.

www.eu-footprint.org

contact@eu-footprint.org