Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z: All
A to Z: Insecticides
A to Z: Herbicides
A to Z: Fungicides
A to Z: Other related substances
Search
Support information
Edit history
Purchasing and licensing
Industry collaboration
NEW
User survey
Chitosan hydrochloride
Last updated: 13/02/2025
(Also known as: chitisan; C00734; poliglusam; deacetylchitin; poliglusam hydrochloride; chitin)

SUMMARY
Citosan is an animal-derived pesticide. There is limited data available for its environmental fate. It has a low mammalian oral toxicity and no significant health effects have been identified. Limited data is available regarding its ecotoxicity but it is known to have a high toxicity to fish.
Data alerts

The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.

Environmental fate Ecotoxicity Human health
 
Ecotoxicity
High alert:
Fish acute ecotoxicity: High
Human health
Low alert
GENERAL INFORMATION
Description
An animal derived fungicide which, structurally, is a straight-chain copolymer composed of D-glucosamine and N-acetyl-D-glucosamine. It is used to control root rots and to improve seed germination, root development and general plant health.
Example pests controlled
Root rot; Growth; Vigour; Stress
Example applications
Hemp; Fruit; Vegetables
Efficacy & activity
Chitosan is a proven plant biostimulator. It has been shown in both field trials and the lab that it can stimulate plant growth, and abiotic stress tolerance. Chitosan has been shown to improve the tolerance of tomatoes to heat stress, increasing productivity. In a study with lettuce, a chitosan-based biostimulant improved yield (biomass) and quality (chlorophyll & total phenolic content, & antiradical activity). In a field experiment with wheat it was clearly demonstrated that foliar treatment of chitosan significantly increased the grain yield, as well as increasing the photosynthetic pigments, total soluble sugar, proline, free amino acid total carbohydrates, antioxidant activities, phenol, flavonoids, and mineral content of wheat plants. Significant increases of different endogenous phytohormones auxins, abscisic acid, gibberellins, and cytokinins were also observed along with improved nutritive values, carbohydrates, proteins & antioxidant compounds. However, studies have also shown that the effectiveness of chitosan biostimulants depends on different chitosan-based structures and concentrations as well as the plant species and developmental stage.
Availability status
Current
Introduction & key dates
2013, first EU evaluation
Substance source
One of the most common polymers found in nature, derived from crustacean exoskeletons such as lobsters, crabs, and shrimp
Substance production
Chitosan hydrochloride is produced commercially through a series of chemical processes involving chitin, which is derived from the exoskeletons of crustaceans like shrimp and crabs. Chitin is extracted from crustacean shells through deproteinization (removal of proteins) and demineralisation (removal of minerals) using alkaline and acidic treatments, respectively. The extracted chitin undergoes deacetylation, where it is treated with a strong alkali, such as sodium hydroxide, to remove acetyl groups. This converts chitin into chitosan. The resulting chitosan is purified to remove any residual chemicals and impurities. Chitosan is then reacted with hydrochloric acid to form chitosan hydrochloride.
GB regulatory status
GB COPR regulatory status
Approved
Date COPR inclusion expires
Open ended
GB LERAP status
No data
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Approved
Dossier rapporteur/co-rapporteur
Greece
Date EC 1107/2009 inclusion expires
Open ended
EU Candidate for substitution (CfS)
No
Listed in EU database
Yes
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
                 
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
                 
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
                 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
ISIceland
NONorway
                 
Additional information
Also used in
USA
Chemical structure
Isomerism
None
Chemical formula
C₅₆H₁₀₃N₉O₃₉
Canonical SMILES
COC(=O)NC1C(C(C(OC1OC2C(OC(C(C2O)N)OC3C(OC(C(C3O)N)O)CO)CO)CO)OC4C(C(C(C(O4)CO)OC5C(C(C(C(O5)CO)OC6C(C(C(C(O6)CO)OC7C(C(C(C(O7)CO)OC8C(C(C(C(O8)CO)OC9C(C(C(C(O9)CO)O)O)N)O)N)O)N)O)N)O)N)O)N)O
Isomeric SMILES
COC(=O)N[C@@H]1[C@H]([C@@H]([C@H](O[C@H]1O[C@@H]2[C@H](O[C@H]([C@@H]([C@H]2O)N)O[C@@H]3[C@H](O[C@H]([C@@H]([C@H]3O)N)O)CO)CO)CO)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)CO)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)CO)O[C@H]8[C@@H]([C@H]([C@@H]([C@H](O8)CO)O[C@H]9[C@@H]([C@H]([C@@H]([C@H](O9)CO)O)O)N)O)N)O)N)O)N)O)N)O)N)O
International Chemical Identifier key (InChIKey)
FLASNYPZGWUPSU-SICDJOISSA-N
International Chemical Identifier (InChI)
InChI=1S/C56H103N9O39/c1-87-56(86)65-28-38(84)46(19(10-74)96-55(28)104-45-18(9-73)95-49(27(64)37(45)83)97-39-12(3-67)88-47(85)20(57)31(39)77)103-54-26(63)36(82)44(17(8-72)94-54)102-53-25(62)35(81)43(16(7-71)93-53)101-52-24(61)34(80)42(15(6-70)92-52)100-51-23(60)33(79)41(14(5-69)91-51)99-50-22(59)32(78)40(13(4-68)90-50)98-48-21(58)30(76)29(75)11(2-66)89-48/h11-55,66-85H,2-10,57-64H2,1H3,(H,65,86)/t11-,12-,13-,14-,15-,16-,17-,18-,19-,20-,21-,22-,23-,24-,25-,26-,27-,28-,29-,30-,31-,32-,33-,34-,35-,36-,37-,38-,39-,40-,41-,42-,43-,44-,45-,46-,47-,48+,49+,50+,51+,52+,53+,54+,55+/m1/s1
2D structure diagram/image available?
Yes
Cambridge Crystallographic Data Centre diagrams
Common Name Relationship Link
Chitosan Parent
General status
Pesticide type
Plant Growth Regulator, Nematicide, Fungicide; Other substance
Other bioactivity & uses
Biostimulant - yeild enhancement & improved abiotic stress resiliance
Substance groups
Animal-derived substance; Natural polysaccharide biostimulant
Taxonomic classification
-
Minimum active substance purity
-
Known relevant impurities
EU dossier: Max content of heavy metals: 40 ppm
Substance origin
Natural
Mode of action
As a biostimulant, chitosan has been shown to promote several defensive genes in plants including pathogenesis-related genes (e.g. glucanase and chitinase). It also induces many enzymes in the reactive oxygen species scavenging system, such as superoxide dismutase, catalase and peroxidase. The signal transduction pathway from chitosan that elicits its responses involves hydrogen peroxide and nitric oxide signals, and it may also directly control gene expression by interacting with chromatin.
CAS RN
9012-76-4
EC number
-
CIPAC number
-
US EPA chemical code
128930
PubChem CID
-
Molecular mass
1526.45
PIN (Preferred Identification Name)
-
IUPAC name
poly-D-glucosamine
CAS name
β-(1,4)-2-amino-2-deoxy-D-glucose
Other status information
Approved via EU & UK 'Basic substance' legislation (Article 28 of Regulation (EC) No 1107/2009)
Relevant Environmental Water Quality Standards
-
Herbicide Resistance Class (HRAC MoA class)
Not applicable
Herbicide Resistance Class (WSSA MoA class)
Not applicable
Insecticide Resistance Class (IRAC MoA class)
Not applicable
Fungicide Resistance Class (FRAC MOA class)
Not applicable
Examples of recorded resistance
-
Physical state
White powder
Related substances & organisms
Formulations
Property
Value
Example manufacturers & suppliers of products using this active now or historically
  • MarkNature
Example products using this active
  • Chitoplant
  • GrowActive Chitosan
Formulation and application details
Available in a range of different formulations including aqueous suspensions, pelleted, seed treatment, concentrated liquids foliar spraying and granules for soil incorporation.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
- - -
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
- - -
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
1.26 X 10-05 Calculated -
Log P
-4.9
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Low
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
1
Q2 Q = Miscellaneous data from online sources
2 = Unverified data of unknown source
-
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
- - -
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
DT₅₀ modelling endpoint
- - -
Note
-
Dissipation rate RL₅₀ (days) on plant matrix
Value
- - -
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
- - -
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
- - -
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
Cannot be calculated - -
Note
-
Potential for particle bound transport index
- - -
Potential for loss via drain flow
- - -
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
- - -
Bio-concentration factor
BCF (l kg⁻¹)
- - -
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 16000
Q2 Q = Miscellaneous data from online sources
2 = Unverified data of unknown source
Rat
Low
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
> 2000
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Unknown species
Low
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
> 1000
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Esisenia foetida
Low
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
1000
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Esisenia foetida
Low
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
- - -
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
> 100
Q2 Q = Miscellaneous data from online sources
2 = Unverified data of unknown source
Expert judgement
Low
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
0.05
F4 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
4 = Verified data
Oncorhynchus mykiss
High
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic plants - Acute 7 day EC₅₀, biomass (mg l⁻¹)
- - -
Algae - Acute 72 hour EC₅₀, growth (mg l⁻¹)
- - -
Algae - Chronic 96 hour NOEC, growth (mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
High (class III) - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 16000
Q2 Q = Miscellaneous data from online sources
2 = Unverified data of unknown source
Rat
Low
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
MRLs
European
EU MRL pesticide database 
Great Britain
GB MRL Register 
Notes
-
Drinking Water Standards
- - -
Drinking Water MAC (μg l⁻¹)
- - -
Mammalian dose elimination route and rate
- - -
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
XNo, known not to cause a problem
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E3 E = Unspecified genotoxicity type (miscellaneous data source)
3 = Negative
XNo, known not to cause a problem
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
XNo, known not to cause a problem
XNo, known not to cause a problem
XNo, known not to cause a problem
Respiratory tract irritant Skin irritant Skin sensitiser
Yes, known to cause a problem
Yes, known to cause a problem
XNo, known not to cause a problem
Eye irritant Phototoxicant  
Yes, known to cause a problem
No data found  
General human health issues
No further information available
Handling issues
Property
Value and interpretation
General
No information available
CLP classification 2013
Health: H315, H319, H335
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
chitosan hydrochloride
French
chitosan
German
Chitosan
Danish
chitosan
Italian
chitosan
Spanish
chitosan
Greek
-
Polish
chitozan
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 13/02/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242