Calcium arsenate is a foliar based insecticide that is now banned in most countries. It is moderately soluble in water and is environmentally persistent. Little data has been published regarding its toxicity to biodiversity. It is highly toxic to mammals if ingested and it is a neurotoxin. It is also a probable carcinogen.
Data alerts
The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.
Example manufacturers & suppliers of products using this active now or historically
Woolfolk Chemicals
FMC
Mechema
Example products using this active
Pencal
Spra-cal
Security
Formulation and application details
Usually formulated as a dust, wettable powder or granules
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
130
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Moderate
Solubility - In organic solvents at 20 °C (mg l⁻¹)
Insoluble
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Methanol
-
Insoluble
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Ethyl acetate
-
Insoluble
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Acetone
-
Insoluble
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
n-Hexane
-
Melting point (°C)
Decomposes before melting
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
-
Boiling point (°C)
Decomposes before boiling
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
-
Degradation point (°C)
1455
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
-
Flashpoint (°C)
-
-
-
Octanol-water partition coefficient at pH 7, 20 °C
P
-
-
-
Log P
-
-
-
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
3.26
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
-
Dissociation constant pKa) at 25 °C
-
-
-
-
Vapour pressure at 20 °C (mPa)
-
-
-
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
-
-
-
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
700
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
Very persistent
DT₅₀ (lab at 20 °C)
700
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
Very persistent
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
General literature: lead does not degrade
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
-
-
-
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Sediment phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
-
-
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
-
-
-
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
Cannot be calculated
-
-
Note
-
Potential for particle bound transport index
-
-
-
Potential for loss via drain flow
-
-
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
-
-
-
CT₅₀ (days)
-
-
Known metabolites
None
ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
20.0
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Rat
High
Mammals - Short term dietary NOEL
(mg kg⁻¹)
-
-
-
(ppm diet)
-
-
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Birds - Acute LD₅₀ (mg kg⁻¹)
-
-
-
Birds - Short term dietary (LC₅₀/LD₅₀)
-
-
-
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
-
-
-
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
-
-
-
Soil micro-organisms
-
-
-
Collembola
Acute LC₅₀ (mg kg⁻¹)
-
-
-
Chronic NOEC (mg kg⁻¹)
-
-
-
Non-target plants
-
-
-
-
-
-
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
1.4
R3 R = Peer reviewed scientific publications 3 = Unverified data of known source
Moderate
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Chronic
-
-
-
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Beneficial insects (Ladybirds)
-
-
-
Beneficial insects (Lacewings)
-
-
-
Beneficial insects (Parasitic wasps)
-
-
-
Beneficial insects (Predatory mites)
-
-
-
Beneficial insects (Ground beetles)
-
-
-
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
A0 A = Chromosome aberration (EFSA database) 0 = No data
;
B0 B = DNA damage/repair (EFSA database) 0 = No data
;
C0 C = Gene mutation (EFSA database) 0 = No data
;
D0 D = Genome mutation (EFSA database) 0 = No data
;
E1 E = Unspecified genotoxicity type (miscellaneous data source) 1 = Positive
XNo, known not to cause a problem
Reproduction / development effects
Acetyl cholinesterase inhibitor
Neurotoxicant
No data found
XNo, known not to cause a problem
✓Yes, known to cause a problem
Respiratory tract irritant
Skin irritant
Skin sensitiser
No data found
✓Yes, known to cause a problem
No data found
Eye irritant
Phototoxicant
 
✓Yes, known to cause a problem
No data found
 
General human health issues
Highly toxic - causes systemic health effects Liver & kidney toxicant May cause marrow damage CLP data - known human carcinogen; IARC - limited evidence of carcinogenicity; US NTP - known carcinogen
Handling issues
Property
Value and interpretation
General
Non combustible Toxic fumes may be emitted on heating Corrosive Hydrolises to arsenic acid in water IMDG Transport Hazard Class 6.1
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242