(Also known as: cyanamide calcium salt; nitrolime; lime nitrogen)
SUMMARY
Calcium cyanamide is an obsolete post-emergence herbicide. Very little data relating to its environmental fate or its ecotoxicity has been published. It is moderately toxic to humans if consumed and is a recognised irritant.
Data alerts
The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.
Environmental fate
Ecotoxicity
Human health
 
 
Human health Moderate alert: Mammals acute toxicity: Moderate
Warning: Significant data are missing
GENERAL INFORMATION
Description
An obsolete post-emergence herbicide and defoliant with some fungicidal activity
Example manufacturers & suppliers of products using this active now or historically
American Cyanamid Co.
Ugine Kuhlmann
Example products using this active
Cyanamide
Nitrolime
Formulation and application details
Provided in granular form which is then applied to moist soil
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
Insoluble
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Insoluble
Solubility - In organic solvents at 20 °C (mg l⁻¹)
-
-
-
Melting point (°C)
1200
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Sublimes
-
Boiling point (°C)
-
-
-
Degradation point (°C)
-
-
-
Flashpoint (°C)
-
-
-
Octanol-water partition coefficient at pH 7, 20 °C
P
-
-
-
Log P
-
-
-
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
2.29
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
-
Dissociation constant pKa) at 25 °C
-
-
-
-
Vapour pressure at 20 °C (mPa)
-
-
-
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
-
-
-
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
-
-
-
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
-
-
-
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Sediment phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
-
-
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
-
-
-
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
Cannot be calculated
-
-
Note
-
Potential for particle bound transport index
-
-
-
Potential for loss via drain flow
-
-
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
-
-
-
CT₅₀ (days)
-
-
Known metabolites
None
ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 1400
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Rat
Moderate
Mammals - Short term dietary NOEL
(mg kg⁻¹)
-
-
-
(ppm diet)
-
-
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Birds - Acute LD₅₀ (mg kg⁻¹)
-
-
-
Birds - Short term dietary (LC₅₀/LD₅₀)
-
-
-
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
-
-
-
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
-
-
-
Soil micro-organisms
-
-
-
Collembola
Acute LC₅₀ (mg kg⁻¹)
-
-
-
Chronic NOEC (mg kg⁻¹)
-
-
-
Non-target plants
-
-
-
-
-
-
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Chronic
-
-
-
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Beneficial insects (Ladybirds)
-
-
-
Beneficial insects (Lacewings)
-
-
-
Beneficial insects (Parasitic wasps)
-
-
-
Beneficial insects (Predatory mites)
-
-
-
Beneficial insects (Ground beetles)
-
-
-
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
-
-
-
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
-
-
-
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242