IUPAC HOME AERU HOME PPDB HOME BPDB HOME VSDB HOME
Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z
Search
Support information
Edit history
Purchasing and licensing
Industry collaboration
NEW
User survey
Arsenic acid
Last updated: 14/11/2024
(Not known by any other names)

SUMMARY
Arsenic acid is an inorganic multi-use substance mainly used as a desiccant and wood preservative for non-food applications. It has a high aqueous solubility but little else has been published regarding its environmental fate and behaviour. It has a moderately toxicity to most fauna. Arsenic acid is highly toxic to mammals if ingested and is a carcinogen.
Data alerts

The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.

Environmental fate Ecotoxicity Human health
 
Ecotoxicity
Moderate alert:
Birds acute ecotoxicity: Moderate; Fish acute ecotoxicity: Moderate; Daphnia acute ecotoxicity: Moderate; Bees acute unknown ecotoxicity: Moderate
Human health
High alert:
Mammals acute toxicity: High; Carcinogen; Genotoxic; Reproduction/development effects; Neurotoxicant
GENERAL INFORMATION
Description
An obsolete highly toxic multi-use substance mainly used as a dessicant and wood preservative for non-food applications
Example pests controlled
-
Example applications
Cotton; Non-cropped areas
Efficacy & activity
-
Availability status
Considered obsolete but may be available in some countries
Introduction & key dates
-
GB regulatory status
GB COPR regulatory status
Not approved
Date COPR inclusion expires
Not applicable
GB LERAP status
No UK approval for use as a pesticide
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Not approved
Dossier rapporteur/co-rapporteur
Not applicable
Date EC 1107/2009 inclusion expires
Not applicable
EU Candidate for substitution (CfS)
Not applicable
Listed in EU database
No
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
                 
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
                 
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
                 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
ISIceland
NONorway
                 
Additional information
Also used in
-
Chemical structure
Isomerism
None
Chemical formula
H₃AsO₄
Canonical SMILES
O[As](=O)(O)O
Isomeric SMILES
-
International Chemical Identifier key (InChIKey)
DJHGAFSJWGLOIV-UHFFFAOYSA-N
International Chemical Identifier (InChI)
InChI=1S/AsH3O4/c2-1(3,4)5/h(H3,2,3,4,5)
2D structure diagram/image available?
Yes
General status
Pesticide type
Herbicide, Insecticide, Rodenticide, Other substance
Other bioactivity & uses
Wood preservative
Substance groups
Inorganic compound
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Natural
Mode of action
-
CAS RN
7778-39-4
EC number
231-901-9
CIPAC number
None allocated
US EPA chemical code
00681
PubChem CID
234
CLP index number
No data found
Molecular mass
141.94
PIN (Preferred Identification Name)
orthoarsenic acid
IUPAC name
orthoarsenic acid
CAS name
arsenic acid
Other status information
Has been detected in some US groundwaters; PAN Bad Actor Chemical; Subject to the provisions of the UK Poisons Act 1972
Relevant Environmental Water Quality Standards
-
Herbicide Resistance Class (HRAC MoA class)
Not known
Herbicide Resistance Class (WSSA MoA class)
Not known
Insecticide Resistance Class (IRAC MoA class)
Not known
Fungicide Resistance Class (FRAC MOA class)
None allocated
Examples of recorded resistance
-
Physical state
White crystalline, hygroscopic solid
Formulations
Property
Value
Example manufacturers & suppliers of products using this active now or historically
-
Example products using this active
  • Desiccant 10
  • Zotox
Formulation and application details
-
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
167000
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
High
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
35
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
-
Boiling point (°C)
120
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
-
Degradation point (°C)
160
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
-
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
2.5
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
-
Dissociation constant pKa) at 25 °C
2.19
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
-
pKa(2)=6.94; pKa(3)=11.5
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
- - -
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
DT₅₀ modelling endpoint
- - -
Note
-
Dissipation rate RL₅₀ (days) on plant matrix
Value
- - -
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
- - -
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
- - -
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
Cannot be calculated - -
Note
-
Potential for particle bound transport index
- - -
Potential for loss via drain flow
- - -
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
- - -
Bio-concentration factor
BCF (l kg⁻¹)
- - -
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
48
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Rat
High
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
1606
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Anas platyrhynchos
Moderate
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
- - -
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
7.7
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Apis mellifera
Moderate
Chronic
- - -
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
53.1
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Oncorhynchus mykiss
Moderate
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
6.5
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Daphnia magna
Moderate
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic plants - Acute 7 day EC₅₀, biomass (mg l⁻¹)
- - -
Algae - Acute 72 hour EC₅₀, growth (mg l⁻¹)
- - -
Algae - Chronic 96 hour NOEC, growth (mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves – NR-Zero (mg l⁻¹)
0.01
F4 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
4 = Verified data
Crassostrea gigas Embryo
-
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
High (class III) - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
48
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
Rat
High
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
MRLs
European
EU MRL pesticide database 
Great Britain
GB MRL Register 
Notes
-
Drinking Water Standards
- - -
Drinking Water MAC (μg l⁻¹)
- - -
Mammalian dose elimination route and rate
- - -
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
Yes, known to cause a problem
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E1 E = Unspecified genotoxicity type (miscellaneous data source)
1 = Positive
?Possibly, status not identified
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
Yes, known to cause a problem
XNo, known not to cause a problem
Yes, known to cause a problem
Respiratory tract irritant Skin irritant Skin sensitiser
Yes, known to cause a problem
Yes, known to cause a problem
No data found
Eye irritant Phototoxicant  
Yes, known to cause a problem
No data found  
General human health issues
Highly toxic - injection may cause muscle weakness, fatigue, anorexia, weight loss.
Class A oncogen
IARC Group 1 carcinogen; CLP data - known human carcinogen
May cause hyperpigmentation &/or hyperkeratosis
Handling issues
Property
Value and interpretation
General
Can react with many different materials including some fabrics, galvanised and other metals releasing toxic gases
Corosive to metals
CLP classification 2013
Health: H301, H331, H350
Environment: H400, H410
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
arsenic acid
French
acide arsenique liquide
German
-
Danish
-
Italian
-
Spanish
-
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 14/11/2024
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242