The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement. These hazard alerts do not take account of usage patterns or exposure, thus do not represent risk.
C1 Criterion 1: Pesticide active ingredients that meet the criteria of classes Ia or Ib of the WHO Recommended Classification of Pesticides by Hazard
]
Type II
Yes [
R01 Rule 1: Pesticide active ingredients that meet the criteria of classes Ia or Ib of the WHO Recommended Classification of Pesticides by Hazard (or those with a CLP classification of H330)
;
R02 Rule 2: Pesticide active ingredients that meet the criteria of carcinogenicity Categories 1A and 1B of the Globally Harmonized System on Classification and Labelling of Chemicals (GHS) (those with a CLP classification of H350)
]
Other status information
FEMA=2489; FLAVIS=13.018
Herbicide Resistance Class (HRAC MoA class)
Not applicable
Herbicide Resistance Class (WSSA MoA class)
Not applicable
Insecticide Resistance Class (IRAC MoA class)
Not applicable
Fungicide Resistance Class (FRAC MOA class)
Not applicable
Examples of recorded resistance
-
Physical state
Colourless to yellow liquid
Commercial
Property
Value
Availability status
-
Introduction & key dates
Circa 1925, introduced
Example manufacturers & suppliers of products using this active now or historically
AgriGuard
Example products using this active
Multiguard Protect
Formulation and application details
Formulated for use as a fumigant
Commercial production
Furfural is commercially produced through the acid-catalysed dehydration of pentosan-rich biomass, such as agricultural residues like corncobs, oat hulls, rice husks, and sugarcane bagasse. These materials contain hemicellulose, which is hydrolysed under high-temperature steam conditions in the presence of a strong acid, typically sulphuric acid, to release pentoses like xylose and arabinose. The pentoses then undergo dehydration to form furfural, which volatilizes and is recovered by steam distillation. The crude furfural is separated from water and purified through fractional distillation to achieve the desired quality. This process is energy-intensive but efficient.
Impact on climate of production and use
GHGs are primarily produced during furfural manufacturing through biomass combustion, acid hydrolysis, and energy-intensive distillation processes. Efforts to reduce the carbon footprint of furfural production include switching to heterogeneous catalysts, using renewable energy for steam generation, and implementing closed-loop systems that recycle heat and minimize waste. Whilst confirmed data is not available it has been estimated that producing 1 kg of furfural from lignocellulosic biomass typically results in approximately 1.2 to 2.5 kg of CO₂-e depending on the energy source and process efficiency.
Solubility - In organic solvents at 20 °C (mg l⁻¹)
Miscible
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Octanol
-
Miscible
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Acetone
-
Miscible
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Xylene
-
Miscible
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Octanol-water partition coefficient at pH 7, 20 °C
P
2.57 X 1000
Calculated
-
Log P
0.41
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Low
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
1.16
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
-
Dissociation constant pKa) at 25 °C
Not applicable
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
-
No dissociation
Vapour pressure at 20 °C (mPa)
29459
Q2 Q = Miscellaneous data from online sources 2 = Unverified data of unknown source
Highly volatile. If applied directly to plants or soil, drift is a concern & mitigation is advisable
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
3.41 X 10-01
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Moderately volatile
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
1
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Non-persistent
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
1
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Non-persistent
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
USA EPA studies Furfural degrades in <1day in sandy soils
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
-
-
-
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Sediment phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Mobile
Koc (mL g⁻¹)
55
Notes and range
US EPA dossier Koc range 52.2-56.9 mL kg⁻¹
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
0.00
Calculated
Low leachability
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
7.34 X 10-04
Calculated
-
Note
-
Potential for particle bound transport index
Low
Calculated
-
Potential for loss via drain flow
Mobile
Calculated
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
Low risk
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Anas platyrhynchos
Moderate
Birds - Short term dietary (LC₅₀/LD₅₀)
-
-
-
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹ dw soil)
> 1000
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
90
K3 K = Research datasets (e.g. Pandora, Demetra; these datasets no longer available). Norman Ecotoxicology database. (click here ) 3 = Unverified data of known source
Apis mellifera
Moderate
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Chronic
-
-
-
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Beneficial insects (Ladybirds)
-
-
-
Beneficial insects (Lacewings)
-
-
-
Beneficial insects (Parasitic wasps)
-
-
-
Beneficial insects (Predatory mites)
-
-
-
Beneficial insects (Ground beetles)
-
-
-
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
> 3.06
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Oncorhynchus mykiss
Moderate
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
> 0.038
P3 P = Other non-EU, UK or US Governments and Regulators 3 = Unverified data of known source
Pimephales promelas 33 day
Moderate
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242